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Phase-Plane Approach to Nonlinear Propagation in
Dielectric Slab Waveguide

Tullio Rozzi, Fellow, IEEE, Franco Chiaraluce, and Leonardo Zappelli

Abstract—Considerable interest is currently being devoted to
nonlinear propagation in dielectric slab waveguides for inte-
grated optics and millimetric applications. Apart from a few
specific analytical cases, much of the current work is numeri-
cally based, so that the qualitative features of the solutions
are lost. In this contribution, we look at on the problem in the
framework of a phase-plane approach, prior to seeking numer-
ical solutions by, say, the Runge-Kutta method. As a result,
qualitative aspects, such as ‘“‘integrals of motion’’ in phase-
plane do emerge from the analysis. Systematic consideration of
these quantities narrows the range of possible solutions down
whilst providing direct physical interpretation of the same.
Particularly suggestive, in this respect, are the interpretations
of the appearance of higher order modes and of the energy/
boundary conditions constraints typical of the nonlinear prob-
lem. The approach is quite general and results will be shown
in the TE and TM cases.

I. INTRODUCTION

T HAS been apparent for a long time that nonlinear

propagation in optical and millimetric waveguides holds
promise in the context of integrated signal processing [1]-
[2]. In recent years, with the development of technology,
increasing attention has been devoted to these effects with
a view to realizing optically bistable devices, switchers,
upper and lower threshold devices, optical limiters and so
on [3]-[5]. In spite of the interest generated by this wide
range of potential applications, much work still remains
in order to achieve an effective characterization. Only a
few cases can be treated analytically. Among them, the
most important is certainly that of the TE-polarized waves
propagating in media with Kerr-like nonlinearity [6]-[8].
In all other cases numerical methods, such as finite ele-
ments [9], Runge-Kutta [10], beam propagation [11],
must be employed. While generally effective, these meth-
ods present the disadvantage of not allowing physical
interpretation of the solutions. In nonlinear problems, in
fact, particularly important is the existence and identifi-
cation of invariant quantities related to ‘‘observable’’
physical parameters of the configuration, such as energy.
Using purely numerical methods, however, a qualitative
analysis of the structure is not possible and many of its
underlying features can not be perceived.
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The aim of the present paper is to overcome some of
these limitations by means of an approach that, although
numerical in itself, is led by a qualitative analysis in
phase-plane. The latter is a representation well known in
the theory of nonlinear first-order systems [12], but still
practically unused in the solution of electromagnetic
problems. Nevertheless, as will be shown, its use affords
a number of important advantages: first of all, a great re-
duction of the computer time required in the analysis, as
this is guided by a qualitative preliminary investigation
that narrows the range where solutions can be found. Sub-
sequently, there emerges a simple and complete physical
interpretation of the results obtained by the numerical
computations. In particular, it is possible to highlight the
role of some ‘‘integrals of motion’’ occurring in phase-
plane: in fact, these are quantities that identify a set of
modes for a given energy level in phase-plane.

The method is completely general and can be applied
to every situation, including arbitrary profiles of the linear
permittivity and arbitrary types of nonlinearity, both for
TE and TM modes.

II. TueoRrY: TE-CASE

The nonlinear dielectric slab structure to be analyzed is
shown in Fig. 1. It consists of a thin, optically nonlinear,
dielectric film, sandwiched between semi-infinite linear
dielectrics. Restricting ourselves to TE polarization, the
electric field E,, propagating along the z axis as exp
[—j(Bz — wi)], must satisfy, in the three regions, the fol-
lowing equations (subscript i = 1, 2, 3 is used to label
the media, as in Fig. 1):

d’Ey 2 2
oz T koer —BIE, =0 -—® <x=<-d (la
d’E,, .
dx; + (kie, — k%T|Ey2|°‘ — BHE, =0

—d=x= +d (1b)
d’Eys 2 2
di + (kjes —BIE3; =0 +d=x< 4+ (lo)

where ky = 27 /N is the wavenumber in the free space
and A is the wavelength. Our attention will be centered
on a defocusing nonlinearity so that, in (1b), 7 > 0.

It is useful to introduce some normalizations. First of
all, we can multiply the above expressions by the factor
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Fig. 1. Asymmetric nonlinear waveguide with nonlinear core and linear
cladding and cover layers.

7'/% /k3 and define the following normalized quantities:

t = kox (2a)
B
b=—
P (2b)
a = kd 20)
w=7""E, i=12,3. Qd)

Substituting these variables in (la)-(lc), the wave
equations can be rewritten as

ul — kiu; =0 —o <t =< —-a (3a)
w + &3 — |lwp|Vu, =0 —a=<t=<-+a (3b)
W — k3uy; =0 +a <t < +o (3¢)
where
ki=+b —¢ i=1,3 (42)
ky = Ne, — b (4b)

and the apex ' denotes a differentiation with respect to z.

The nonlinear equations system (3a)-(3c) can be effi-
ciently represented and studied in a so called ‘‘phase-
plane.”’ In such a plane, the relationship between u; and
its first derivative u; is described, as a function of 7, by
some curves which must be continuous in correspondence
of the interface abscissae ¢ = +a. More precisely, (3a)
holds in the cladding region with the following, obvious,
asymptotic conditions:

u(—) = uj(~) =0 ®

so that, integrating with respect to u; between u,(— )
and u,(r), we have

uyo exp k(¢ + a)l ©)

U

and
v = M; = klul. (7)

Quite similar expressions hold, of course, in the cover
region, where we obtain

Uy = uz exp [—k3(t — a)] tJ)
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Fig. 2. Sketch, in the phase-plane, of the representation of the locus equa-
tions for the linear cladding and cover layers.

and

I

Uy E Uz = —k3u3. (9)

Starting from (7) and (9), the relationship between the
normalized field u, and its first derivative v,(i = 1, 3) in
the external regions can be represented, in a plane u, v
(phase-plane) by two straight lines passing through the
origin, Each point of these lines corresponds to a partic-
ular value of 7 as well as to a particular pair of values u,,
v,(i = 1, 3). The orbits so described are drawn in Fig. 2,
where their directions for increasing ¢ have been also evi-
denced, for clarity.

In particular, if we consider the fundamental mode
only, assuming u,, > 0, we must select:

1) the path in the first quadrant which, starting from
the origin (where u,(—o) = v(—o) = 0), goes on the
straight line v; = kyuy, in the sense of increasing ¢, to-
wards the point [u;(—a), v,(—a)] corresponding to the
core-cladding interface field;

2) the path in the fourth quadrant which, starting from

' the point [us(+a), v3(+a)], corresponding to the core-

cover interface field, goes on the straight line v; = —k3us,
in the sense of increasing ¢, towards the origin (where,
again, we have uz(+o) = v3(+ ) = 0).

The analysis can now proceed with the derivation of the
paths relative to the nonlinear core. The following bound-
ary conditions hold:

w(—a) = u(—a (10a)
w(+a) = uz(+a) (10b)
uy(—a) = ui(—a) (10c)
wy(+a) = uj(+a). (10d)

We can integrate (3b), with respect to u,, between the
normalized values uy = u,(to) and u, = u,(¢). Noting that
fu" du = {u' du’ =} u'*, we obtain the following locus
on the uv-plane:

2

2
vy + uiy, ~ g vl
2
= vf +uiyy — S uilul® (D

where vy, = k3.
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It is explicitly noted that the physical interpretation of
(11) is that of an ‘‘integral of motion’’ in phase-plane, as
in classical mechanics.

The application of these concepts to the nonlinear slab
problem is further illustrated by the following considera-
tions.

In order to describe an ‘‘allowed orbit,”” we can choose
as an initial point (x4, ©,) the intersection of this locus
with the path (7) describing the field in the cladding, i.e.,

Uy = kluo. (12)
Substitution of (12) in (11) gives
2 [o4
v3 + uzy, — mu%|uz|
= upley — &) = ———uglul® (13)

which analytically represents the curve we are looking for.
Its shape depends, of course, on the exponent o, whose
value controls the strength of the nonlinearity; for exam-
ple, in the trivial case of o« & —oo, the nonlinearity dis-
appears and the curve is reduced to an ellipse.

Equation (13) gives not one but a family of curves (or-
bits), all symmetrical with respect to the u-axis, having
v, as a parameter. In particular, when o = 2 (correspond-
ing to a Kerr-like nonlinearity) the loci assume the shape
shown in Fig. 3 where different values of the interface
field, E,(—d), have been considered.

From the wave equation in the core region (3b) we infer
that the following condition must be satisfied, in order to
recover guided modes

T2 = [ws|* > 0. (14)

Equation (14) delimits the portion of the uv-plane where
guided modes can be found. Furthermore, only one orbit
is capable of reaching the limit condition [uppn,,| = v/,
where |Uyy.,| is the maximum value for the modulus of
the normalized field resulting from the intersection of the
orbit (13) with the u-axis.

The orbit passing through u,,,, can be determined sim-
ply by assuming, as starting point in (11), |ug| = 'y%/"‘
vy = 0. For example, in the case of the fundamental
mode, which is characterized by the condition u; = 0 (i
= 1, 2, 3), with some algebraic manipulations, the equa-
tion of this ‘‘limit orbit’’ results:

2 o (@+2)/a
uy | = -
o+ 2 2> Y2

b

v+ 3 <72 - > 19
All the orbits that represent guided modes must lie inside
the limit orbit. In particular, in the case of Kerr nonlin-
earity, an example of significant locus is reported in Fig.
4, where also the straight lines relative to the external re-
gions are drawn for completeness.

As regards the slope of any orbit, for the points of the
u-axis, where ¢ = 0, we have in general (for simplicity,
in the following, we will omit suffix 2 when not neces-

N
/

Fig. 3. Sketch, in the phase-plane, of the representation of the locus equa-
tion for the nonlinear core layer in the case of a Kerr-like nonlinearity. The
interface field E,(—d) is assumed as a parameter: (a) E,(—=d) = 0.7 - 10*
V/m; (b) E,(—d) = 1.0 - 10 V/m; (¢) E,(—=d) = 1.2 - 10° V/m. 7 is
equal to 107% m?/V2,

lirmit orbit

iy

Fig. 4. Representation of the significant loci in the case of Kerr nonlin-

earity.
sary):
dv
dv dt u" (16)
e = — = — = o0
du v=0 @ Vii=o
del, _g

Only in the limit case (1|,_o = y}/%) we obtain, directly
from the wave equation, the condition u”|, -4 = 0, which
entails that the derivative dv/dul, o has two finite and
different values. This result is quite evident in Fig. 4. Fi-
nally, we observe that the limit value of u increases when
the eigenvalue 8 decreases, and the region bounded by the
limit orbit becomes wider and wider.

The problem of finding a guided mode becomes that of”
determining, along one of the orbits of Fig. 3, a path con-
necting the two straight lines relative to the outer layers.
Among the possible paths, each of them described as ¢
varies, we have to search for the one which connects the
point [u(—a), v(—a)], on the straight line v(¢) — ku®@)
= 0, with the point [u(a), v(a)], on the straight line v(r)
+ ksu(t) = 0, covering, at the same time, a distance Ar
exactly equal to the normalized width of the core region,
2a. Obviously, there may be more than one way for doing
so and, according to the quadrants where start and end
points lie, it is possible to obtain different solutions.
Moreover, owing to the closed structure of the orbit, ev-
ident, for example, from an inspection of Fig. 3, we can
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Fig. 5. Sketch of typical orbits for a guide which supports three modes.
We have noted with A the orbit described by the fundamental mode, with
4 the orbit described by the second mode and with O the orbit described
by the third mode, using a single row (—) to denote an orbit which is
covered only once and a double row (— —) to denote an orbit which is
covered twice.

choose, as a solution, a path which makes more than one
turn around the origin before reaching a point correspond-
ing to the second dielectric interface, in any case ensuring
that the covered distance is equal to 2a. It is easy to un-
derstand that each of these possible connections corre-
sponds to a different guided wave. In fact, together with
the fundamental mode, characterized by u# > 0, also
higher order modes of order n, withn = 1,2, - -+ , can
exist, characterized by n zeros of u in the range [¢f| < a.
As an example, we have plotted, in Fig. 5, typical orbits,
in the case of Kerr-like nonlinearity, for a guide which
supports three modes.

As regards the fundamental mode, we must consider
the path that starts from the branch of the straight line
laying in the first quadrant and arrives, with a clockwise
rotation, to intersect the branch of the straight line laying
in the fourth quadrant, making less than one full turn. In
this situation, the normalized field u exhibits only one
maximum, whose value, as previously stressed, is reached
when v = 0. In conclusion, the locus of interest is that
qualitatively shown in Fig. 6.

Letting v, = 0 and uy = constant > O in the locus
equation (13) and differentiating with respect to 3, keep-
ing in mind that v, > u5,,, we have

. B
duZmax amax k(z)
‘ = 0 >0, 17)
dﬁ Y2 T Uzmax

80 that u,,,, increases with 8. A variation of 3, for a fixed
value of uy, may be due to a change in some electrical or
geometrical parameter of the structure. Alternatively, in
a multimodal structure, when the modal order increases,
the value of 8 decreases, so that, for a fixed cladding-core
interface field, the fundamental mode has the highest value
of .4, the second mode a value greater than those of all
other modes except the fundamental one and so on.

Removing the constraint u, = constant, we can also
investigate how the system evolves when the field at the
boundary ¢+ = —a varies. For such a purpose, it is nec-
essary, first of all, to analyze the behavior of the phase
constant 8 as a function of uy.
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Fig. 6. Sketch of a typical orbit for the fundamental mode.

For the fundamental mode (uy > 0), by differentiation
of the locus equation (13) with respect to uy, we obtain

dv du dvy,
20— +2 — Uy — + u’ ==
v duo “ (’YZ " ) duo “ duo
- 2u0(€2 - € —-‘ug) = 0. (18)

This result is valid for any value of u. Nevertheless it is
expedient to fix the u-value in order to analyze the orbit
variation on a straight line parallel to the v-axis of the
phase-plane, so that we have du/duy = 0. If we put u =
Umax, ¥ = 0, (18) gives

@ - 2ug(e; — €5 — ug)
duO ugnax ‘

(19)

Obviously, the value of dvy,/du, has to be the same if
computed in correspondence of a different value of u, say
u = u*. Hence, also the following equation must hold

d
2ugle, — € — ugy) — 2uU* av
duo w=u* )
20
duy u* @0

dyy _

where v* = v(u*). Equating the right hand sides of (19)

- and (20) we obtain

_4_1}. — u0(62 - € — ug)(urznax - u*Z)' (21)
duo

2
U max v*

u=u*

As we have u* < u,,, and e, — ¢, > u§, dv/dug|, =+
has the same sign of the ratio uy/v*. If u, is positive, as
in the present case, the locus widens as u, increases and
contracts as u, decreases.

In addition, from (19) we infer

as _ _I_C_(2> uples — € —
duO B ufnax

which is always negative. So we conclude that, increasing
the value of the interface normalized field i, the value of
the phase constant 3 decreases. As a consequence, the
values of k, and k; decrease as well. This involves lower
slopes for the straight lines relative to the outer regions,
so that the electric field decay is slower and the field is
less confined.

In conclusion, it is clear how these qualitative consid-

up)

(22)
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erations can be efliciently employed in the framework of
numerical computation.

Returning now to the problem of determining a suitable
path, in the sense specified above, capable of describing
field propagation in the core region, this can be simply
and efficiently solved by resorting to the well known
Runge-Kutta method. The latter can be used in order to
integrate the following system:

Uy = 1, (23a)
vy = (72 = |w|"uy (23b)
with initial conditions
Uy = u(—a, (24a)
Vsg = kyltag. (24b)

We subdivide the integration interval in N equal parts of
length

2a
h = N (25)
so that
t = —a
ty1=t+h i=1,-"+,(N-2).
ty=a (26)

The differential equation system (23a) =+ (23b) is, of
course, a function of the normalized propagation constant
b which is an unknown of the problem, together with the
field itself. Therefore we must rely on an iterative pro-
cedure, changing the value of » until one is found for
which a crossing of the straight line relative to the cover
takes place, after N steps (that is for ¢ = a). In fact, for
any mode, only a value of b exists such that the distance
covered on the connecting path equals 2a. The computer
program we have implemented, for performing the re-
quired iterations, is very simple and efficient. An opti-
mum accuracy level can be achieved with a computing
time that is much shorter than that of other numerical
techniques, like the finite element method, previously
proposed by other authors. Furthermore, the result can be
refined acting, in a really direct way, on the number of
subdivisions of the normalized width 2a.

III. NumeRricaL REesuLts: TE-CASE

With reference to Fig. 1, calculations have been per-
formed for a guide with the following characteristics:

Ao = L1.55 um,
2d = 1. pm,
€3 = 1.,

e = 11.76,

BA,

linear case — - -~~~ o o

T
0.075

0.125
£nl (.'d) '

Fig. 7. Dependence of the normalized phase constant 8 /k, on the param-
eter e,(—d) = } 7[E,(~d)]*.

and

_ 11.42, in order to obtain a waveguide which
0™ supports only one TE mode,

10., in order to obtain a waveguide which

I~ supports two TE modes,

7., in order to obtain a waveguide which

1= supports three TE modes.

With the goal of comparing our results with those pre-
viously reported in the literature, we have firstly consid-
ered a Kerr-type nonlinearity (o = 2). In this case, it is
convenient, as proposed by other authors [6], [8], to rep-
resent the field intensities in terms of the nonlinear di-
electric constant change at the interfaces. So we have used
the notation €,/ (—d) = % T[Ey(—d)]z. In Fig. 7 we have
drawn the behavior of the normalized phase constant
B /koy, assuming ¢, (—d) as an independent variable. As
expected, the normalized eigenvalue 38 /k, becomes closer
and closer to the refractive index of the cladding region,
n; = e, when the field at the core-cladding interface
increases or, equivalently, when the nonlinearity coeffi-
cient 7 is increased as well. This means that the field be-
comes less and less confined as the time-average power
down the guide increases. For e,;(—d) = 0.125 we reach
the limit condition, in the sense that no bound mode so-
lution can be found beyond this value. In Fig. 8 we have
reported, for the same guide, the near field as a function
of the normalized transverse coordinate x/2d. Different
values of ¢,/(—d) are considered, showing, as previously
stressed, the confinement reduction effect when this pa-
rameter increases. More precisely, the curves have been
obtained for a fixed value of the nonlinearity coefficient
7, set equal to 107° m*/V?2, while the core-cladding in-
terface field has been made variable. For comparison the
result valid in the linear case is also reported in the Fig-
ure. It must be noted that field decay in the cover region
is much more pronounced that in the cladding region. This
is clearly a consequence of the fact that the structure here
considered is greatly asymmetric. The curves plotted in
Fig. 8 are exactly coincident with those obtainable by the
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B y[v/im]

09 10° —
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-1.5 . . . . 1.0
x/2d
Fig. 8. Waveguide near field profile dependence on the interface field
E,(=d): (@) E(—d) = 0.7 - 10* V/m; (b) E,(—d) = 1.0 - 10* V/m; (¢)
E(-d) =12 10*V/m; (d) E(—d) = 1.6 - 10* V/m. In any case the
nonlinearity coefficient 7 has been set equal to 107° m? /V2. Dashed line
represents the linear case drawn for comparison.

completely analytical method described in [8]. This con-
firms the effectiveness of the procedure here proposed in
the case of Kerr-type nonlinearity. At the same time, the
validity of [8] is limited to o = 2, while the present anal-
ysis is much more general and can be applied without lim-
itations on the value of the nonlinearity exponent «.

Several other considerations can be made starting from
the analysis of Fig. 8. First of all, because of the optical
nonlinearity, the field does not increase in proportion with
E(—d), as it would be usual in the linear case, but it
tends to increase more in the cladding and less in the core.
At the same time, its maximum shifts towards the core-
cladding interface, so confirming the anti-guiding trend as
the power flow increases. This consideration suggests, as
well known, that the present structure may be used as an
optical limiter, directly controllable through the signal
level.

If, alternatively, we fix the field value at the core-clad-
ding interface and change the nonlinearity coefficient 7,
we obtain the near fields shown in Fig. 9, where we have
assumed Ey(—d) = 10*V /m. In this case, an increase in
€, (—d) leads to an increase of the field in the cladding
region and to a decrease of the field in the core region,
with obvious confinement reduction.

Finally, in Fig. 10, the dependence of the field profile
on the normalized parameter a = kod is shown, for a fixed
value of both the interface fields and r (such as to have
e (—d) = 0.05). When a decreases, that is, d decreases
or \ increases, the guide exhibits a greater tendency to
defocalization. Hence, if we consider that the wavelength

has to be chosen on the basis of the material, it is possible

to conclude that a reduction in the core width, d, leads to
a guide that is more sensitive to power fluctuations. The
curves of Fig. 10 are quite similar to the analogous ones
reported in [8], so confirming, once again, the validity of
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14 10*

Ey[v/m]

07 10*

0.0

x/2d

Fig. 9. Waveguide near field profile dependence on the nonlinearity coef-
ficient 7: (@) 7 = 0.5 - 1072 m?/V2, (b)) 7 = 1.0 - 107" m*/V?; (c) 7 =
1.5-107°m?/V3 (d) 7= 2.5 10"° m?/V?2 In any case the interface
field E,(—d) has been set equal to 10* V/m. Dashed line represents the
linear case drawn for comparison.

14 10*

&y [v/m]

0.7 10*

0.0

x/2d

Fig. 10. Waveguide near field profile dependence on the normalized pa-
rameter a: (a) a = 3: (b) a = 4.05;(¢c)a = 5;(d)a = 6;(¢)a = 7. The
parameter ¢,,(—d) has been set equal to 0.05.

the proposed method when applied to already known
structures.

On the other hand, one of the main characteristics of
the numerical method we have adopted is that it applies
to any kind of power-law nonlinearity; so the exponent o
can assume any positive value. Assuming ¢; = 11.42, ¢,
=11.76 and 7 = 107° m*/V %, we have reported in Fig.
11 the maximum field value as a function of the nonlin-
earity exponent «. It has been derived by taking into ac-
count that for the asymmetric waveguide under consid-
eration, the fundamental mode is at cut-off, at least in the
linear case, when the core-cladding dielectric step is less
than about 0.09 [8].
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Fig. 11. Maximum field value for the fundamental mode against the non-
linearity exponent o.

Therefore, the expression

€ — 0.09>‘/"‘

(E,vllmit)max = <62 — (27)

.
can be considered as a good approximation also in the
nonlinear case, whichever the value of « is.

The curve of Fig. 11 is useful in order to make a com-
parison between types of nonlinearity that differ in the
value of the nonlinearity exponent. In Fig. 12, for ex-
ample, we have drawn the behavior of E, for some typical
values of the parameter «. The field at the core-cladding
interface has been set equal to 80 V /m, in order to ensure
that, for the same values of ¢;, ¢, and 7 considered in
Fig. 11, the field is bounded also for « = 4. Only the
field in a significant portion of the core region has been
represented, while, externally it decays with the usual ex-
ponential law. The curves relative to the values a = 1, «
= 2 and o = 3 are practically superimposed because the
intensity is too low for an appreciable deviation from lin-
earity to take place. Only in the cases of @ = 3.5 and «
= 4 the nonlinearity is large enough to show clearly its
effect on the field, whose maximum shifts, at the same
time, towards the cladding region.

For the same values of the parameters, we have drawn,
in Fig. 13, the normalized phase constant 8 /k, versus the
nonlinearity exponent «. Only in the case of @ = 4 we
have a significant reduction in the phase constant value.
Again, this is a consequence of the value assumed for the
core-cladding interface field. Correspondingly, the mode
is almost at the guiding limit and it decays very slowly in
the outer regions.

Finally, in Fig. 14, we have reported the field behavior
for the three modes, TEq, TE; and TE, of a guide with ¢,
=7,E(—d) =10*V/m,a =2and 7 = 10"° m?/V?2,
The numerical values are in perfect agreement with those
obtained by the qualitative analysis in the phase-plane.
Furthermore, it must be noted that the field distributions
are only slightly asymmetric. Obviously, this is a conse-
quence of the particular values we have set for the guide
parameters, combined with the strength, not very pro-
nounced, of the nonlinearity assumed.

1.0 10°
E y[V/m] —
a
b
09 107 ©
\\
0.5 10"~ i ——
0.5 04 03 0.2 0.1 0.0
x/2d

Fig. 12. Waveguide near field profile in a significant portion of the core
region for different values of the exponent «. Curve (a) refers to the o =
1, 2, 3 cases, which are practically superimposed; curve (b) refers to o =
3.5 and curve (¢) to & = 4. The interface field E,(—d) has been set equal
to 80 V/m while 7 = 107 m* /v,

Bk

0
linear case —»

1 2 3 4
o

Fig. 13. Normalized phase constant 8/k, against the nonlinearity expo-
nent o, with E,(—d) = 80 V/mand 7 = 107° m*/V*.

3.010%
E [V/m]
y 4
2.010% 4

1.010% 4

2.0 10* . : , |
15 -1

Fig. 14. Electric field distributions of a waveguide which supports three
TE modes: (a) TEy; (b) TE,; (c) TE,.

IV. THEORY: TM-CASE

This follows lines analogous to the TE case, but with
a slightly more complex wave equation, that is now writ-
ten for the H, component.
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Fig. 15. Behavior of the ¢, in the core for the TM polarization.

In the core, the latter takes the form

d (1 d , B2
E Hy2+ ko—'e““ [{},2=0 (28)

€rz dx rx

where ¢, and ¢,, denote the components of the permittiv-
ity tensor along x and z respectively, that are functions of
E,and E,.

We consider the electrostrictive case, i.e., €, =
€,

Renouncing to define normalized quantities, we set

€ =

U, = Hy2 (293.)
1

L (29b)
€ dx

and express ¢,, as a function of u, and v, in the core, in
the form: )

T+ 20lvy]* — €) + 08%up|* =0 (30)
where § = 7/w%€§.

It is noted that, unlike in the TE case, the substitution
of (29) in (28) is not sufficient for producing the analytical
expression of a locus in phase-plane. This is due to the ¢,
dependence on u, and v, expressed by (30), which has
to be solved at each step of the Runge-Kutta method. In
other terms, (30) constitutes a sort of self-consistence
condition that the field distribution must satisfy together
with (28). As a result, we obtain a semi-analytical expres-
sion, not written here for the sake of brevity, which can
be managed by simple numerical methods, so allowing us
to plot the locus in phase-plane. As an example, we have
reported in Fig. 15 the behavior of the ¢, in the core and
in Fig. 16 the corresponding locus in phase-plane for the
fundamental mode, assuming the following parameter
values: Ng = 1.55 um, 2d = 1 pm, ¢; = 10, ¢, = 11.76,
& =1, H(-d) =100 A/m,a=2,7= 1077 m?/ V2.

The field distributions of the fundamental TM mode are
reported in Fig. 17. We note the presence of the required
discontinuity in E, at the dielectric interfaces, whereas E,
and H, are continuous there.
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Fig. 16. Sketch of a typ—iz:ai_orbit for the fundamental TM mode.
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Fig. 17. Field components in the slab for the fundamental TM mode.

V. EXTENSION TO MoORE COMPLEX STRUCTURES

The theory described in the previous: sections can be
extended, without any conceptual difficulty, to consider
more practical or more complex cases, such as the guide
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Fig. 18. Sketch of a typical orbit for the fundamental mode of a slab with
Kerr-type nonlinearity in the core and in the cladding, assuming the fol-
lowing parameter values: Ny = 1.55 um, 2d = 1 pm, ¢, = 11,42, ¢, =
1176, s = 1, E(=d) = 1.0 - 10* V/m, @, =@ =2,7, =7 = 1.0 -
10° m?/V2

with nonlinear cladding. In the latter situation, with ref-
erence, for example, to TE polarization, (1a) has to be
replaced by

d’E,,
-+ (ke + kG| |Ex|* = BHE, = 0

-0 < x < —d

where the possibility of having a defocusing nonlinearity
(—) or a focusing one (+) has been taken into account.
By considering the normalized quantities- (2) and the
asymptotic conditions (5), the locus equation on the uv-
plane, in the defocusing case becomes

2

2 2.2
vy — kiuy —
(X1+2

i |y |* = 0 (32)
which reduces to (7) in the linear case (c; = — ).

An example of complete locus is shown in Fig. 18,
where, again, a Kerr-type nonlinearity has been consid-
ered, with the following parameter values: Ay = 1.55 um,
2d =1pm, e = 1142, ¢, = 11.76, 3 = 1, E(—d) =
1.0-10°V/myy =a=2,7,=7=1.0-10"m?/V?,
where o and 7 have the meaning introduced in the pre-
vious sections.

The unknown value of 8 and the corresponding field
distributions result, as before, from the application of an
iterative Runge-Kutta method. Among the infinite possi-
ble paths the only one satisfying both the interface con-
ditions has to be found. ‘

In reality, the proposed method is a very general one,
so that many other structures, including the TM case with
general nonlinearities, for which e,, # ¢,,, can be studied
in the same way, at the expense of a slightly more com-
plicated analysis.

VI. CONCLUSION

Introducing phase-plane concepts helps the search for
solutions of the nonlinear slab problem in two ways: 1)
by restricting the range of possible solutions; 2) by pro-

@1

viding a physical interpretation of the results by means of
““integrals of motion’’ in phase-plane.

Current work is directed towards applying these con-
cepts to more realistic three dimensional waveguides.
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