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Phase-Plane Approach to Nonlinear Propagation in

Dielectric Slab Waveguide
Tullio Rozzi, Fellow, IEEE, Franco Chiaraluce, and Leonardo Zappelli

Abstract–Considerable interest is currently being devoted to

nonlinear propagation in dielectric slab waveguides for inte-

grated optics and millimetric applications. Apart from a few

specific analytical cases, much of the current work is numeri-

cally based, so that the qualitative features of the solutions

are lost. In this contribution, we look at on the problem in the
framework of a phase-plane approach, prior to seeking numer-

ical solutions by, say, the Runge–Kutta method. As a result,

qualitative aspects, such as “integrals of motion” in phase-
plane do emerge from the analysis. Systematic consideration of
these quantities narrows the range of possible solutions down

whilst providing direct physical interpretation of the same.
Particularly suggestive, in this respect, are the interpretations
of the appearance of higher order modes and of the energy/

boundary conditions constraints typical of the nonlinear prob-
lem. The approach is quite general and results will be shown

in the TE and TM cases.

I. INTRODUCTION

I T HAS been apparent for a long time that nonlinear

propagation in optical and millimetric waveguides holds

promise in the context of integrated signal processing [l]-

[2]. In recent years, with the development of technology,

increasing attention has been devoted to these effects with

a view to realizing optically bistable devices, switchers,

upper and lower threshold devices, optical limiters and so

on [3]–[5]. In spite of the interest generated by this wide

range of potential applications, much work still remains

in order to achieve an effective characterization. Only a

few cases can be treated analytically. Among them, the

most important is certainly that of the TE-polarized waves

propagating in media with Kerr-like nonlinearity [6]-[8].

In all other cases numerical methods, such as finite ele-

ments [9], Runge-Kutta [10], beam propagation [11],

must be employed. While generally effective, these meth-

ods present the disadvantage of not allowing physical

interpretation of the solutions. In nonlinear problems, in

fact, particularly important is the existence and identifi-

cation of invariant quantities related to ‘ ‘observable”
physical parameters of the configuration, such as energy.

Using purely numerical methods, however, a qualitative

analysis of the structure is not possible and many of its

underlying features can not be perceived.

Manuscript received December 10, 1990; revised May 29, 1991.
The authors are with the Dipartmento di Elettronica ed Automatic,

University degli Studi di Ancona, Via Brecce Bianche, 60131 Ancona, It-
aly.

IEEE Log Number 9102819.

The aim of the present paper is to overcome some of

these limitations by means of an approach that, although

numerical in itself, is led by a qualitative analysis in

phase-plarte. The latter is a representation well known in

the theory of nonlinear first-order systems [12], but still

practically unused in the solution of electromagnetic

problems. Nevertheless, as will be shown, its use affords

a number of important advantages: first of all, a great re-

duction of the computer time required in the analysis, as

this is guided by a qualitative preliminary investigation

that narrows the range where solutions can be found. Sub-

sequently, there emerges a simple and complete physical

interpretation of the results obtained by the numerical

computations. In particular, it is possible to highlight the

role of some “integrals of motion” occurring in phase-

plane: in fact, these are quantities that identify a set of

modes for a given energy level in phase-plane.

The method is completely general and can be applied

to every situation, including arbitrary profiles of the linear

permittivity and arbitrary types of nonlinearity, both for

TE and TM modes.

II. THEORY: TE-CASE

The nonlinear dielectric slab structure to be analyzed is

shown in Fig. 1. It consists of a thin, optically nonlinear,

dielectric film, sandwiched between semi-infinite linear

dielectrics. Restricting ourselves to TE polarization, the

electric field Ey, propagating along the z axis as exp

[ –X 6Z – COOI,mustsatisfy, in the three regions, the fol-
lowing equations (subscript i = 1, 2, 3 is used to label

the media, as in Fig. 1):

d2Ey1
~ + (k:q – /32)Ey1 = O —m<xs –d (la)

–dsxs+d (lb)

d2Ey3
~ + (kgq – /32)Ey3 = o +d S X < +~ (lc)

where k. = 27r / h is the wavenumber in the free space

and h is the wavelength. Our attention will be centered

on a defocusing nonlinearity so that, in (lb), ~ > 0.

It is useful to introduce some normalizations. First of

all, we can multiply the above expressions by the factor
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Fig. 1. Asymmetric nonlinear waveguide with nonlinear core and linear

cladding and cover layers.

# ‘a/k~ and define the following normalized quantities:

t = kox

@
b=–

k.

a = kod

Substituting these variables

equations can be rewritten as

u; – k;ul = O

u; + (k; – IU21”)U2 = O

u; – k;u3 = O

where

ki=fi

(2a)

(2b)

(2C)

= 1, 2, 3. (2d)

in (la)–(lc), the wave

—m<t<—a (3a)

–a<t<+a (3b)

+a<t<+co (3C)

i=l,3 (4a)

(4b)

and the apex ‘ denotes a differentiation with respect to t.

The nonlinear equations system (3a) -(3c) can be effi-

ciently represented and studied in a so called “phase-

plane. ” In such a plane, the relationship between Ui and

its first derivative u: is described, as a function of t, by

some curves which must be continuous in correspondence

of the interface abscissae t = +a. More precisely, (3a)

holds in the cladding region with the following, obvious,

asymptotic conditions:

Zq(–m) = U;(–m) = o

so that, integrating with

and u 1(t), we have

U1 = Ulo

and

respect to u 1 between

exp [kl(t + a)]

(5)

Zq(–m)

(6)

(7)

Quite similar expressions hold, of course, in the cover

region, where we obtain

U3 = U30 exp [ –k3(t – a)] (8)

Fig. 2. Sketch, in the phase-plane, of the representation of the locus equa-
tions for the linear cladding and cover layers.

and

V3 = U; = –k3u3. (9)

Starting from (7) and (9), the relationship between the

normalized field u, and its first derivative v, (i = 1, 3) in

the external regions can be represented, in a plane u, v

(phase-plane) by two straight lines passing through the

origin. Each point of these lines corresponds to a partic-

ular value of t as well as to a particular pair of values u,,

v, (i = 1, 3). The orbits so described are drawn in Fig. 2,

where their directions for increasing t have been also evi-

denced, for clarity.

In particular, if we consider the fundamental mode

only, assuming Ulo > 0, we must select:

1) the path in the first quadrant which, starting from

the origin (where ul(–co) = VI(– CO) = O), goes on the

straight line VI = kl U1, in the sense of increasing t, to-

wards the point [ul ( –a), VI( –a)] corresponding to the

core-cladding interface field;

2) the path in the fourth quadrant which, starting from

the point [U3( +a), V3( +a)], cw-responding to the core-

cover interface field, goes on the straight line V3 = —k3 U3,

in the sense of increasing t, towards the origin (where,

again, we have U3(+CO) = V3(+CO) = 0),

- The analysis can now proceed with the derivation of the

paths relative to the nonlinear core. The following bound-

ary conditions hold:

u2(–a) = ul(–a) (lOa)

u2(+a) = u3(+a) (lOb)

u~(–a) = u;(–a) (1OC)

uj(+a) = u~(+a). (lOd)

We can integrate (3b), with respect to U2, between the

normalized values U. = u2(to) and U2 - u2(t). Noting that

jU” du = j U’ du’ = ~ U’2, we obtain the following locus

on the uv-plane:

where 72 = k;.
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It is explicitly noted that the physical interpretation of

(11) is that of an “integral of motion” in phase-plane, as

in classical mechanics.

The application of these concepts to the nonlinear slab

problem is further illustrated by the following considera-

tions.

In order to describe an “allowed orbit, ” we can choose

as an initial point (uo, Vo) the intersection of this locus

with the path (7) describing the field in the cladding, i.e.,

2“0 = kluo. (12)

Substitution of ( 12) in (11) gives

which analytically represents the curve we are looking for.

Its shape depends, of course, on the exponent a, whose

value controls the strength of the nonlinearity; for exam-

ple, in the trivial case of a ~ – m, the nonlinearity dis-

appears and the curve is reduced to an ellipse.

Equation (13) gives not one but a family of curves (or-

bits), all symmetrical with respect to the u-axis, having

72 as a parameter. In particular, when CY= 2 (correspond-

ing to a Kerr-like nonlinearity) the loci assume the shape

shown in Fig. 3 where different values of the interface

field, EY( –d), have been considered.

From the wave equation in the core region (3b) we infer

that the following condition must be satisfied, in order to

recover guided modes

-y2 – Iu’la> 0. (14)

Equation (14) delimits the portion of the uu-plane where

guided modes can be found. Furthermore, only one orbit

is capable of reaching the limit condition Iu2~~XI = Yilat
where lu2~,Xl is the maximum value for the modulus of

the normalized field resulting from the intersection of the

orbit (13) with the u-axis.

The orbit passing through uz~,X can be determined sim-

ply by assuming, as starting point in (1 1), IU. I = FY~/U,

Vo = O. For example, in the case of the fundamental

mode, which is characterized by the condition Uj > 0 (i

= 1, 2, 3), with some algebraic manipulations, the equa-

tion of this “limit orbit” results:

( 2
v;+”; 7’–— u;

)

(0!+2)/@
= ?’2

0!+2 2“ ‘1’)

All the orbits that represent guided modes must lie inside

the limit orbit. In particular, in the case of Kerr nonlin-

earity, an example of significant locus is reported in Fig,

4, where also the straight lines relative to the external re-

gions are drawn for completeness.

As regards the slope of any orbit, for the points of the

u-axis, where v = O, we have in general (for simplicity,

in the following, we will omit suffix 2 when not neces-

ac

Fig. 3. Sketch, in the phase-plane, of the representation of the 10CUSequa-

tion for the nonhnear core layer in the case of a Kerr-hke nonlinearity. The
interface field E,( –d) is assumed as a parameter: (a) E,(–d) = 0.7 104

V/m; (b) E,(–d) = 1.0 ~ 10~ V/m; (c) E,(–d) = 1.2 . 10J V/m. r is

equal to 10-9 m2/V2.

I I I

Fig. 4. Representation of the significant loci in the case of Kerr nonlin-
earity.

sary):

du

du dt u “

du ~=o = du ‘u ,,=0 = ‘“
(16)

dt ,,=0

Only in the limit case (u 1,,= o = Tj/a ) we obtain, directly

from the wave equation, the condition u“ I~c o = O, which

entails that the derivative d v/du 1,,= o has two finite and

different values. This result is quite evident in Fig. 4. Fi-

nally, we observe that the limit value of u increases when

the eigenvalue ~ decreases, and the region bounded by the

limit orbit becomes wider and wider.

The problem of finding a guided mode becomes that of

determining, along one of the orbits of Fig. 3, a path con-

necting the two straight lines relative to the outer layers.

Among the possible paths, each of them described as t

varies, we have to search for the one which connects the

point [u( –a), V( –a)], on the straight line v(t) – ,kIu(t)

= O, with the point [u(a), v(a)], on the straight line u(t)

+ k3 u(t) = O, covering, at the same time, a distance At

exactly equal to the normalized width of the core region,

2a. Obviously, there may be more than one way for doing

so and, according to the quadrants where start and end

points lie, it is possible to obtain different solutions.

Moreover, owing to the closed structure of the orbit, ev-

ident, for example, from an inspection of Fig. 3, we can
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Fig. 5. Sketch of typical orbits fora guide which supports three modes.

Wehavenotedwlth A theorbit described bythe fundamental mode, with
+theorbit described bythesecond mode and with o the orbit described
by the third mode, using a single row (+) to denote an orbit which is
covered only once and a double row (++) to denote an orbit which is

covered twice.

choose, as a solution, a path which makes more than one

turn around the origin before reaching a point correspond-

ing to the second dielectric interface, in any case ensuring

that the covered distance is equal to 2a. It is easy to un-

derstand that each of these possible connections corre-

sponds to a different guided wave. In fact, together with

the fundamental mode, characterized by u > 0, also

higher order modes of order n, with n = 1, 2, “ “ . , can

exist, characterized by n zeros of u in the range Itl < a.

As an example, we have plotted, in Fig. 5, typical orbits,

in the case of Kerr-like nonlinearity, for a guide which

supports three modes.

As regards the fundamental mode, we must consider

the path that starts from the branch of the straight line

laying in the first quadrant and arrives, with a clockwise

rotation, to intersect the branch of the straight line laying

in the fourth quadrant, making less than one full turn. In

this situation, the normalized field u exhibits only one

maximum, whose value, as previously stressed, is reached

when v = O. In conclusion, the locus of interest is that

qualitatively shown in Fig. 6.

Letting Vz = O and UO = constant > 0 in the locus

equation (13) and differentiating with respect to 6, keep-

ing in mind that -y2 > u ~maX,we have

g

duzmax = ‘2maxk; >0

d~
(17)

‘Y2 – u ;max ‘

so that u2~,X increases with D. A variation of 6, for a fixed

value of Uo, may be due to a change in some electrical or

geometrical parameter of the structure. Alternatively, in

a multimodal structure, when the modal order increases,

the value of D decreases, so that, for a fixed cladding-core

interface field, the fundamental mode has the highest value

of u2~,X, the second mode a value greater than those of all

other modes except the fundamental one and so on.
Removing the constraint U. = constant, we can also

investigate how the system evolves when the field at the

boundary t = –a varies. For such a purpose, it is nec-

essary, first of all, to analyze the behavior of the phase

constant (? as a function of U..

Fig. 6. Sketch of a typical orbit for the fundamental mode.

For the fundamental mode (u. > O), by differentiation

of the locus equation (13) with respect to U. we obtain

z dy2
2u~+2u(72”u”)%+u —

duo

– 2UO(CJ – .s, – ‘u:) = o. (18)

Tliis result is valid for any value of u. Nevertheless it is

expedient to fix the u-value in order to analyze the orbit

variation on a straight line parallel to the v-axis of the

phase-plane, so that we have du /duo = O. If we put u =

umax > v = O, (18) gives

(19)

Obviously, the value of d~2/duo has to be the same if

computed in correspondence of a different value of u, say

u = u*. Hence, also the following equation must hold

dv
2UO(E2 – E* – U[) – 2V* —

dy2 = duo ,,=u*

duo
(20)

@

where v* = v(u*). Equating the right hand sides of (19)

and (20) we obtain

d~ _ uo(~2 – Cl – f&)(uiax – U*2)
(21)

G ~=u. –
2*

u rnax v

As we have U* 5 Umaxand 62 –- c1 > u;, dv/duOIL~=U*

has the same sign of the ratio uojv*. If U. is positive, as

in the present case, the locus widens as U. increases and

contracts as U. decreases.

In addition, from (19) we infer

which is always negative. So we conclude that, increasing

the value of the interface normalized field Uo, the value of

the phase constant D decreases. As a consequence, the
values of kl and k3 decrease as well. This involves lower

slopes for the straight lines relative to the outer regions,

so that the electric field decay is slower and the field is
less confined.

In conclusion, it is clear how these qualitative consid-
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erations can be efficiently employed in the framework of

numerical computation.

Returning now to the problem of determining a suitable

path, in the sense specified above, capable of describing

field propagation in the core region, this can be simply

and efficiently solved by resorting to the well known

Runge-Kutta method. The latter can be used in order to

integrate the following system:

u; = v~ (23a)

~; = –(72 – l~21a).% (23b)

with initial conditions

U20 = u~(–a), (24a)

v~o = k, UZO. (24b)

We subdivide the integration interval in N equal parts of

length

h=;, (25)

so that

t, = –a

t,+l=t, +h z’=l, co. ,(N -2).

tN=a (26)

The differential equation system (23a) + (23b) is, of

course, a function of the normalized propagation constant

b which is an unknown of the problem, together with the

field itself. Therefore we must rely on an iterative pro-

cedure, changing the value of b until one is found for

which a crossing of the straight line relative to the cover

takes place, after N steps (that is for t = a). In fact, for

any mode, only a value of b exists such that the distance

covered on the connecting path equals 2a. The computer

program we have implemented, for performing the re-

quired iterations, is very simple and efficient. An opti-

mum accuracy level can be achieved with a computing

time that is much shorter than that of other numerical

techniques, like the finite element method, previously

proposed by other authors. Furthermore, the result can be

refined acting, in a really direct way, on the number of

subdivisions of the normalized width 2a.

III. NUMERICAL RESULTS: TE-CASE

With reference to Fig. 1, calculations have been per-

formed for a guide with the following characteristics:

ho = 1.55 f.tm,

2d= 1. pm,

63 = 1.,

e2 = 11.76,

m,
linear case + -----------------------------------------

I

0.025 0.075 0.”

Enl (-d)
,

25

Fig, 7. De~endence of the normalized uhase constant 6 /kfi on the uaram-
eter 6.,(–d) = j;[E~(–d)]z. ‘ “ ‘

11,42, in order to obtain a waveguide which

supports only one TE mode,

10,, in order to obtain a waveguide which

supports two TE modes,

7., in order to obtain a waveguide which

supports three TE modes.

With the goal of comparing our results with those pre-

viously reported in the literature, we have firstly consid-

ered a Kerr-type nonlinearity (a = 2). In this case, it is

convenient, as proposed by other authors [6], [8], to rep-

resent the field intensities in terms of the nonlinear di-

electric constant change at the interfaces. So we have used

the notation ~,,l(–d) = ~ ~[EY( –d)]2. In Fig. 7 we have

drawn the behavior of the normalized phase constant

(3/ko, assuming e.{ ( –d) as an independent variable. As

expected, the normalized eigenvalue ~/k. becomes closer

and closer to the refractive index of the cladding region,

n, = &, when the field at the core-cladding interface
increases or, equivalently, when the nonlinearity coeffi-

cient ~ is increased as well. This means that the field be-

comes less and less confined as the time-average power

down the guide increases. For c.~( –d) = 0.125 we reach

the limit condition, in the sense that no bound mode so-

lution can be found beyond this value. In Fig. 8 we have

reported, for the same guide, the near field as a function

of the normalized transverse coordinate x/2d. Different
values of .snl( –d) are considered, showing, as previously

stressed, the confinement reduction effect when this pa-

rameter increases. More precisely, the curves have been

obtained for a fixed value of the nonlinearity coefficient

T, set equal to 10-9 m2 /V 2, while the core-cladding in-

terface field has been made variable. For comparison the

result valid in the linear case is also reported in the Fig-

ure. It must be noted that field decay in the cover region

is much more pronounced that in the cladding region. This

is clearly a consequence of the fact that the structure here

considered is greatly asymmetric. The curves plotted in

Fig. 8 are exactly coincident with those obtainable by the
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Fig. 8. Waveguide near field profile dependence on the interface field

E,(–d):(a)EY(–d) =0.7 ~ 10JV/m; (b) E,(–d) = 1.0. 10’ V/m;(c)

E,(–d) = 1.2 . 104 V/m; (d) E,(–d) = 1.6. 104 V/m. Inany case the

nonlinearity coefficient t-has been set equal to 10–9 m2/V2. Dashed line
represents the linear case drawn for comparison,

completely analytical method described in [8]. This con-

firms the effectiveness of the procedure here proposed in

the case of Kerr-type nonlinearity. At the same time, the

validity of [8] is limited to a = 2, while the present anal-

ysis is much more general and can be applied without lim-

itations on the value of the nonlinearity exponent a.

Several other considerations can be made starting from

the analysis of Fig. 8. First of all, because of the optical

nonlinearity, the field does not increase in proportion with

EY( –d), as it would be usual in the linear case, but it

tends to increase more in the cladding and less in the core.

At the same time, its maximum shifts towards the core-

cladding interface, so confirming the anti-guiding trend as

the power flow increases. This consideration suggests, as

well known, that the present structure may be used as an

optical limiter, directly controllable through the signal

level.

If, alternatively, we fix the field value at the core-clad-

ding interface and change the nonlinearity coefficient ~,

we obtain the near fields shown in Fig. 9, where we have

assumed EY( –d) = 104 V/m. In this case, an increase in

6.1( –d) leads to an increase of the field in the cladding

region and to a decrease of the field in the core region,

with obvious confinement reduction.

Finally, in Fig. 10, the dependence of the field profile

on the normalized parameter a = kod is shown, for a fixed

value of both the interface fields and r (such as to have

c~l ( –d) = 0.05). When a decreases, that is, d decreases

or h increases, the guide exhibits a greater tendency to

defocalization. Hence, if we consider that the wavelength
has to be chosen on the basis of the material, it is possible

to conclude that a reduction in the core width, d, leads to

a guide that is more sensitive to power fluctuations. The

curves of Fig. 10 are quite similar to the analogous ones

reported in [8], so confirming, once again, the validity of

-i,5 -i,o -tl.5 6.0 6.5

x/2d

107

.0

Fig. 9, Waveguide near field profile dependence on the nonlinearity coef-
ficient T: (a) r = 0.5 . 10-9 m2/V2; (b) ~ = 1.0. 10-9 m2/V2; (c) ~ =

1.5. 10-9 m2/V’; (d) r = 2.5. 10-9 m’/V’. In any case the’ interface
field E,( –d) has been set equal to 104 V/m. Dashed line represents the

linear case drawn for comparison.

1.4 104

E ~ [V/m]

0.7104

0.0
-1.5 -1.0 -0.5 0.0 0.5

x/2d

.0

Fig. 10. Waveguide near field profile dependence on the normalized pa-
rameter: (a)a = 3: (b) a = 4.05; (c) a = 5; (d) a = 6; (c)a = 7. The

parameter enl( –d) has been set equal to 0.05.

the proposed method when applied to already known

structures.

On the other hand, one of the main characteristics of

the numerical method we have adopted is that it applies

to any kind of power-law nonlinearity; so the exponent a

can assume any positive value. Assuming 61 = 11.42, 62
. 11.76 and ~ = 10-9 mu/V”, we have reported in Fig.

11 the maximum field value as a function of the nonlin-

earity exponent a. It has been derived by taking into ac-

count that for the asymmetric waveguide under consid-

eration, the fundamental mode is at cut-off, at least in the

linear case, when the core-cladding dielectric step is less

than about 0.09 [8].
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Fig. 11. Maximum field value forthefundamental mode against the non-
linearity exponent a.

Therefore, the expression

( )

I/a

(~yl,mit)nr.x =

q — El — 0.09
(27)

T

can be considered as a good approximation also in the

nonlinear case, whichever the value of a is.

The curve of Fig. 11 is useful in order to make a com-

parison between types of nonlinearity that differ in the

value of the nonlinearity exponent. In Fig. 12, for ex-

ample, we have drawn the behavior of Ey for some typical

values of the parameter a. The field at the core-cladding

interface has been set equal to 80 V/m, in order to ensure

that, for the same values of ~,, e2 and ~ considered in
Fig. 11, the field is bounded also for u = 4. Only the

field in a significant portion of the core region has been

represented, while, externally it decays with the usual ex-

ponential law. The curves relative to the values a = 1, a

= 2 and a = 3 are practically superimposed because the

intensity is too low for an appreciable deviation from lin-

earity to take place. Only in the cases of a = 3.5 and a

= 4 the nonlinearity is large enough to show clearly its

effect on the field, whose maximum shifts, at the same

time, towards the cladding region.

For the same values of the parameters, we have drawn,

in Fig. 13, the normalized phase constant @/k. versus the

nonlinearity exponent a. Only in the case of a = 4 we

have a significant reduction in the phase constant value.

Again, this is a consequence of the value assumed for the

core-cladding interface field. Correspondingly, the mode

is almost at the guiding limit and it decays very slowly in

the outer regions.

Finally, in Fig. 14, we have reported the field behavior

for the three modes, TEO, TE1 and TE2 of a guide with el

= 7, Ey(–d) = 104 V/m, u = 2 and ~ = 10-9 m2/V2.

The numerical values are in perfect agreement with those

obtained by the qualitative analysis in the phase-plane.

Furthermore, it must be noted that the field distributions

are only slightly asymmetric. Obviously, this is a conse-

quence of the particular values we have set for the guide

parameters, combined with the strength, not very pro-

nounced, of the nonlinearity assumed.

1.0 102

E ~ [v/m]

0.9 102

0.8 102 , I 1 1 I
5 -0.4 -0.3 -0.2 -0.1

x/2cJ

‘.0

Fig. 12. Waveguide near field profile in a significant portion of the core
region for different values of the exponent cr. Curve (a) refers to the a =

1, 2, 3 cases, which are practically superimposed; curve (b) refers to a =
3.5 and curve (c) to a = 4. The interface field E,( –d) has been set equal

to 80 V/m while r = 10-9 mu/V”.

‘inear::+
n

1

l-----------------------------------------

Fig. 13. Normalized phase constant (3/k0 against the nonlinearity expo-

nent a, with E,(–d) = 80 V/m and ~ = 10-9 mu/V”.
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Fig. 14. Electric field distributions of a waveguide which supports three

TE modes: (a) TEO; (b) TE,; (c) TE2,

IV. THEORY: TM-CASE

This follows lines analogous to the TE case, but with

a slightly more complex wave equation, that is now writ-

ten for the Hy component.
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Fig. 15. Behavior of’thee, inthecore forthe TM polarization.

In the core, the latter takes the form

$( HH,2+(’+)HJ2=”’28)
where E,Xand e,z denote the components of the permittiv-

ity tensor along x and z respectively, that are functions of

EX2 and EZ2.

We consider the electrostrictive case, i.e., 6,X = ~,Z =

ET.

Renouncing to define normalized quantities, we set

U2 = HY2 (29a)

(29b)

and express e,, as a function of U2 and v, in the core, in

the form:

where O = T/u”c~.

It is noted that, unlike in the TE case, the substitution

of (29) in (28) is not sufficient for producing the analytical

expression of a locus in phase-plane. This is due to the q.

dependence on Uz and ZJ2, expressed by (30), which has

to be solved at each step of the Runge-Kutta method. In

other terms, (30) constitutes a sort of self-consistence

condition that the field distribution must satisfy together

with (28). As a result, we obtain a semi-analytical expres-

sion, not written here for the sake of brevity, which can

be managed by simple numerical methods, so allowing us

to plot the locus in phase-plane. As an example, we have

reported in Fig, 15 the behavior of the e, in the core and

in Fig. 16 the corresponding locus in phase-plane for the

fundamental mode, assuming the following parameter

values: ho = 1.55 ~m, 2d = 1 pm, Cl = 10, e2 = 11.76,

e3 = 1, Hy(–d) = 102 A/m, a = 2, ~ = 10–9 m2/V2.
The field distributions of the fundamental TM mode are

reported in Fig. 17. We note the presence of the required

discontinuity in EX at the dielectric interfaces,, whereas Ez

and Hy are continuous there.

Fig. 16. Sketch of a typ~al–orbit for the fundamental TM mode.
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Fig. 17. Field components in the slab for the fwzdamental TM mode.

V. EXTENSION TO MORE COMPLEX STRUCTURES

The theory described in the previous sections can be

extended, without any conceptual difficulty, to consider

more practical or more complex cases, such as the guide
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L
Fig. 18. Sketch of a typical orbit for the fundamental mode of a slab with

Kerr-type nonlinearity in the core and in the cladding, assuming the fol-

lowing parameter values: k. = 1.55 pm, 2d = 1 pm, c, = 11.42, ~z =
11.76, c3 = l, EY(–d) = 1.0 . 104 V/m, al = a =2,71 = ~= 1.0 ~

10-9 m2/V2.

with nonlinear cladding. In the latter situation, with ref-

erence, for example, to TE polarization, (la) has to be

replaced by

d2Ey1
~ + (k&l + k~lTll IEy,l”’ – /32)Ey1 = O

where the possibility of having a defocusing nonlinearity

(–) or a focusing one (+) has been taken into account.
By considering the normalized quantities- (2) and the

asymptotic conditions (5), the locus equation on the uu-

plane, in the defocusing case becomes

2
v: – k:u: – — u;lu,la’ = o (32)

tYl+2

which reduces to (7) in the linear case (al ~ – m).

An example of complete locus is shown in Fig. 18,

where, again, a Kerr-type nonlinearity has been consid-

ered, with the following parameter values: & = 1.55 ~m,

2d= l~m,el = 11.AZ,E2 = 11.76, ~q = l, Ey(–d) =

1.0 “ 104 V/m, al = CY= 2, ~1 = ~ = 1.0 “ 10-9 m2/V2,

where a and T have the meaning introduced in the pre-

vious sections.

The unknown value of 6 and the corresponding field

distributions result, as before, from the application of an

iterative Runge–Kutta method. Among the infinite possi-

ble paths the only one satisfying both the interface con-

ditions has to be found.

In reality, the proposed method is a very general one,
so that many other structures, including the TM case with

general nonlinearities, for which 6,X # e,Z, can be studied

in the same way, at the expense of a slightly more com-

plicated analysis.

VI. CONCLUSION

Introducing phase-plane concepts helps the search for

solutions of the nonlinear slab problem in two ways: 1)

by restricting the range of possible solutions; 2) by pro-

viding a physical interpretation of the results by means of

“integrals of motion” in phase-plane.

Current work is directed towards applying these con-

cepts to more realistic three dimensional waveguides.
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